hypochondrogenesis

Hypochondrogenesis is a rare, severe disorder of bone growth. This condition is characterized by a small body, short limbs, and abnormal bone formation (ossification) in the spine and pelvis.

Affected infants have short arms and legs, a small chest with short ribs, and underdeveloped lungs. Bones in the skull develop normally, but the bones of the spine (vertebrae) and pelvis do not harden (ossify) properly. The face appears flat and oval-shaped, with widely spaced eyes, a small chin, and, in some cases, an opening in the roof of the mouth called a cleft palate. Individuals with hypochondrogenesis have an enlarged abdomen and may have a condition called hydrops fetalis in which excess fluid builds up in the body before birth.

As a result of these serious health problems, some affected fetuses do not survive to term. Infants born with hypochondrogenesis usually die at birth or shortly thereafter from respiratory failure. Babies who live past the newborn period are usually reclassified as having spondyloepiphyseal dysplasia congenita, a related but milder disorder that similarly affects bone development.

Frequency

Hypochondrogenesis and achondrogenesis, type 2 (a similar skeletal disorder) together affect 1 in 40,000 to 60,000 newborns.

Genetic Changes

Hypochondrogenesis is one of the most severe conditions in a spectrum of disorders caused by mutations in the *COL2A1* gene. This gene provides instructions for making a protein that forms type II collagen. This type of collagen is found mostly in the clear gel that fills the eyeball (the vitreous) and in cartilage. Cartilage is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears. Type II collagen is essential for the normal development of bones and other connective tissues that form the body's supportive framework. Mutations in the *COL2A1* gene interfere with the assembly of type II collagen molecules, which prevents bones and other connective tissues from developing properly.

Inheritance Pattern

Hypochondrogenesis is considered an autosomal dominant disorder because one copy of the altered gene in each cell is sufficient to cause the condition. It is caused by new

mutations in the *COL2A1* gene and occurs in people with no history of the disorder in their family. This condition is not passed on to the next generation because affected individuals do not live long enough to have children.

Other Names for This Condition

achondrogenesis type II/hypochondrogenesis

Diagnosis & Management

These resources address the diagnosis or management of hypochondrogenesis:

- Genetic Testing Registry: Hypochondrogenesis https://www.ncbi.nlm.nih.gov/gtr/conditions/C0542428/
- MedlinePlus Encyclopedia: Achondrogenesis https://medlineplus.gov/ency/article/001247.htm

These resources from MedlinePlus offer information about the diagnosis and management of various health conditions:

- Diagnostic Tests https://medlineplus.gov/diagnostictests.html
- Drug Therapy https://medlineplus.gov/drugtherapy.html
- Surgery and Rehabilitation https://medlineplus.gov/surgeryandrehabilitation.html
- Genetic Counseling https://medlineplus.gov/geneticcounseling.html
- Palliative Care https://medlineplus.gov/palliativecare.html

Additional Information & Resources

MedlinePlus

- Encyclopedia: Achondrogenesis https://medlineplus.gov/ency/article/001247.htm
- Health Topic: Connective Tissue Disorders
 https://medlineplus.gov/connectivetissuedisorders.html
- Health Topic: Dwarfism https://medlineplus.gov/dwarfism.html

Additional NIH Resources

 National Institute of Arthritis and Musculoskeletal and Skin Diseases https://www.niams.nih.gov/Health_Info/Connective_Tissue/

Educational Resources

- MalaCards: hypochondrogenesis http://www.malacards.org/card/hypochondrogenesis
- Nemours Children's Health System: Skeletal Dysplasia
 http://www.nemours.org/service/medical/skeletal-dysplasia.html?tab=about
- Orphanet: Achondrogenesis
 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=932

Patient Support and Advocacy Resources

- Cleft Palate Foundation http://www.cleftline.org/
- Human Growth Foundation http://hgfound.org/
- International Skeletal Dysplasia Registry, UCLA http://ortho.ucla.edu/isdr
- Little People of America http://www.lpaonline.org
- National Organization for Rare Disorders (NORD) https://rarediseases.org/rare-diseases/achondrogenesis/
- Resource list from the University of Kansas Medical Center http://www.kumc.edu/gec/support/dwarfism.html
- The MAGIC Foundation https://www.magicfoundation.org/

Genetic Testing Registry

- Achondrogenesis, type II https://www.ncbi.nlm.nih.gov/gtr/conditions/C0220685/
- Hypochondrogenesis https://www.ncbi.nlm.nih.gov/gtr/conditions/C0542428/

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28hypochondrogenesis%5BTIAB %5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last +3600+days%22%5Bdp%5D

OMIM

 ACHONDROGENESIS, TYPE II http://omim.org/entry/200610

Sources for This Summary

- Castori M, Brancati F, Scanderbeg AC, Dallapiccola B. Hypochondrogenesis. Pediatr Radiol. 2006 May;36(5):460-1. Epub 2006 Jan 24.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16432703
- Körkkö J, Cohn DH, Ala-Kokko L, Krakow D, Prockop DJ. Widely distributed mutations in the COL2A1 gene produce achondrogenesis type II/hypochondrogenesis. Am J Med Genet. 2000 May 15;92(2):95-100.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10797431
- Spranger J, Winterpacht A, Zabel B. The type II collagenopathies: a spectrum of chondrodysplasias.
 Eur J Pediatr. 1994 Feb;153(2):56-65. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8157027
- Suzumura H, Kohno T, Nishimura G, Watanabe H, Arisaka O. Prenatal diagnosis of hypochondrogenesis using fetal MRI: a case report. Pediatr Radiol. 2002 May;32(5):373-5. Epub 2002 Mar 9.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11956729

Reprinted from Genetics Home Reference:

https://ghr.nlm.nih.gov/condition/hypochondrogenesis

Reviewed: July 2008

Published: February 7, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services